ACI EUROPE POSITION

Trans-European Transport Network (TEN-T) Revision

December 2022

Introduction

The Trans-European Transport Network (TEN-T) is a planned network of roads, railways, airports, ports, inland waterways and maritime shipping routes in the EU, and it is part of a broader system of Trans-European Networks (TENs), including a telecommunication network (eTEN) and an energy network (TEN-E or Ten-Energy). The TEN-T network is regulated by a policy which addresses the implementation and development of a Europe-wide network of railway lines, roads, inland waterways, maritime shipping routes, ports, airports and railroad terminals.

In December 2021, the European Commission proposed a revision of the TEN-T to address the EU Green Deal¹, Fit for 55² and the Smart and Mobility Strategy³. The TEN-T revision's main objectives are to ensure reliable connectivity without gaps and bottlenecks and promote green mobility while raising standards for all transport modes on efficiency, sustainability and resilience. The target is to make transport greener by providing the appropriate infrastructure to reduce congestion and greenhouse gas emissions. Additionally, it will facilitate seamless and efficient transport and foster multimodality and interoperability between the TEN-T transport modes. The revision particularly encourages a modal shift to more sustainable forms of transportation, with a view to increasing the use of rail.

Aviation plays a fundamental role in connecting communities as well as establishing and maintaining business connections. The aviation sector's objective is to continue providing this vital connectivity and preserve economic and social benefits to contribute to Europe's social, economic and territorial cohesion, while also reducing its climate impact and achieving net zero carbon emissions by 2050.

European airports have been active in decarbonisation for decades. Supported by the *Airport Carbon Accreditation* programme, launched by ACI EUROPE in 2009, they have reduced carbon emissions from their operations and engaged with their stakeholders to reduce their carbon footprint. In June 2019, the European airport industry committed to reaching Net Zero Carbon emissions by 2050, at the latest.

In a similar vein, European airports have advocated for European aviation to adopt an ambitious roadmap to significantly reduce its environmental footprint. In February 2021, ACI EUROPE, A4E, ASD, CANSO and ERA published the Destination 2050 roadmap⁴, "A route to net zero European Aviation by 2050", ensuring the alignment of the sector with the Paris Agreement⁵ and the EU Green Deal.

Against this background, ACI EUROPE supports the overall goal of the Trans-European Transport Network revision to improve the connectivity of the transport system and make it smart, safe, seamless, sustainable, resilient, accessible and intermodal. With this Position Paper, ACI EUROPE provides its assessment of the key TEN-T elements of relevance to European airports and offers suggestions for improvements.

¹ <u>https://ec.europa.eu/info/strategy/priorities-2019-2024/european-green-deal_en</u>

² https://ec.europa.eu/commission/presscorner/detail/en/IP_21_3541

³ <u>https://transport.ec.europa.eu/transport-themes/mobility-strategy_en</u>

⁴ https://www.destination2050.eu/

⁵ https://unfccc.int/process-and-meetings/the-paris-agreement/the-paris-agreement

1. General Comments

- 1.1. In December 2020, the European Commission adopted the Smart and Mobility Strategy targeting a reduction of transport-related greenhouse gas emissions of 90% by 2050. A key focus of the strategy is to create zero-emission airports recognising they are key for international connectivity, the European economy and the regions. Airports should become multimodal mobility hubs and transport hubs, linking all relevant transport modes.
- **1.2.** As part of the proposal, the European Commission encouraged a modal shift from air to rail by actively promoting the reduction of short-haul flights as one of the measures to ensure all collective travels under 500km become carbon neutral by 2030. In the same spirit, within the proposed revision of the TEN-T, the European Commission targets a shift to more sustainable forms of transport, and particularly to increase the share of rail.
- 1.3. ACI EUROPE supports the overall policy objectives of the TEN-T proposal to deliver on the increased climate ambition for 2030 and the overall objective of reaching climate neutrality by 2050. In particular, we support the notion that TEN-T guidelines should create a coherent policy framework for a high standard transport network while avoiding disproportionate impacts on public authorities, operators of infrastructure (including airport operators) and mobility service providers. EU policies should promote better integration of the various transport modes, working together to deliver optimal multimodal solutions for the benefit of passengers and Europe's connectivity while at the same time minimising the carbon footprint. Increased private and public investments are urgently required to ensure an even faster transition to zero emissions aviation.
- **1.4.** However, dogmatic policies aiming to curb air transport development are likely to be counterproductive and limit the sector's ability to invest in sustainability.
- **1.5.** European aviation associations published a study⁶ showing the limited CO₂ reduction benefits of shifting short-haul flights to rail. While a direct comparison of current emissions confirms that on several routes rail has lower CO₂ emissions per passenger than air travel, the CO₂ benefits of shifting short-haul flights to rail are limited and generate other environmental as well as social and economic costs associated with the construction and maintenance of rail lines. There are also cases where a shift from rail to aviation is the best CO₂ alternative, for instance between Copenhagen and the island of Bornholm. Furthermore, domestic flights in parts of the EU (including Denmark and Sweden) are likely to be emissions free already in 2030. This should be factored into the analysis before firm decisions are made on modal shifts.
- **1.6.** In addition, EUROCONTROL highlighted⁷ that short-haul flights under 500km accounted for only 3,8% of CO₂ European aviation emissions in 2019 (4.3% in 2020). It is often forgotten that these flights provide vital connections and mobility in many EU countries where the traveltime by car or rail can be very long. It should be noted that many recent studies have failed to include the significant environmental and CO₂ -emissions impacts of building high-speed rail infrastructure, in particular, the total life-cycle emissions and the energy source used when comparing the total environmental footprint of air and rail. When considering rail's impact on biodiversity, noise pollution, and possible passenger shift to road transport, the gap in total environmental performance between rail and air travel is significantly reduced.

⁶ <u>https://www.aci-europe.org/media-room/384-new-study-confirms-co2-reduction-benefits-of-shifting-short-haul-flights-to-rail-are-limited.html</u>

⁷ <u>https://www.eurocontrol.int/article/eurocontrols-think-paper-air-and-rail-balance-european-environment-agencys-reaction</u>

1.7. According to Destination 2050⁸, the European aviation sector's decarbonisation roadmap, hybrid-electric and hydrogen aircraft could be deployed on European routes within 10-15 years. Considering the long-time lead times involved in building high-speed rail (18-26 years), transport policies should be more balanced and factor in aviation's decarbonisation roadmap in the next 15 years. Moreover, it should be noted that while high-speed rail may be a relevant transport solution in densely populated areas of Europe generating high volumes of passengers, it is less so in Nothern European countries where this is not the case.

2. <u>Revision of the Trans-European Transport Network (TEN-T)</u>

<u>The current TEN—T Guidelines mention as a first priority for air transport infrastructure</u> development "increasing airport capacity" (article 26(a) of Regulation (EU)1315/2013). The revised TEN-T guidelines would instead prioritize "increasing airport energy and operational efficiency" (article 34 of the TEN-T proposal). The other priorities are also amended to include new technologies and innovation – including alternative fuels, zero – and low emission aircraft and infrastructure.

Whereas the current TEN-T Guidelines prioritize "improving multimodal interconnections between airports and infrastructure of other modes", the TEN-T proposal expands requirements on airports to be connected to rail and road networks of the TEN-T network.

The scope of "air transport infrastructure" is significantly expanded in the revised TEN-T Guidelines. "Airports" are only part of the wider scope of "air transport infrastructure". Whereas the current TEN-T Guidelines simply refer to "airports", the proposal expands this notion to "airports, including the infrastructure and equipment necessary for ground and transport operations within the airport area, vertiports and spaceports." This provides a basis for requirements regarding ground operations, in particular the provision of preconditioned air.

Key contents of the proposal of relevance to airports

- ✤ According to Article 33, Member States shall ensure that:
 - Airports of the core network are connected with the long-distance rail network, including the high-speed rail network, and road infrastructure of the TEN-T network by 2030
 - Airports of the comprehensive network with a total annual passenger traffic volume of more than four million passengers are connected with the longdistance rail network, including the high-speed rail network, and road infrastructure of the TEN-T network by 2050
 - Air transport infrastructure provides for pre-conditioned air supply to stationary aircraft.

At the request of a Member State, the European Commission may grant exemptions from the obligations above, based on a socio-economic cost-benefit analysis or related to the specific geographic or significant physical constraints (including the non-existence of a railway system on the territory).

⁸ <u>https://www.destination2050.eu/</u>

3. <u>Obligation for the Member States to ensure the connection between</u> <u>airports of the core and comprehensive network of the TEN-T with</u> <u>the long-distance rail network, including the high-speed rail network</u>

- **3.1.** ACI EUROPE supports the development of intermodal solutions as a way to enhance airports' economic growth and environmental sustainability efforts. By improving and increasing the connection with public transport, especially the rail network, the airports' catchment area is extended, helping airports to generate economic growth. Additionally, it will alleviate congestion, relieve road access and contribute to airports' efforts to improve local air quality, as landside access accounts for almost 50% of some airports' emissions. Another positive impact is the greening of airport workers' commutes.
- **3.2.** Within the same context, when airports face increased congestion, High-Speed Rail can be a sustainable alternative, freeing up capacity for long-haul flights for which no ground alternatives exist.
- **3.3.** However, ACI EUROPE urges EU policymakers to also take into account the environmental impact of building new rail connections in Europe⁹. Indeed, building new rail infrastructure has a high environmental cost due to ecosystem fragmentation and the CO₂ emissions associated with the production of cement and steel and the emissions from the fuel used during construction. Moreover, rail access should not undermine airports efforts to limit noise for surrounding communities.
- **3.4.** In a similar vein, a requirement for airports to be connected to the rail network, including the high-speed rail network, is not always appropriate given the limited traffic at some airports and the existence of train stations or metro stations that are already operational within a satisfactory geographical range for many regional airports.
- **3.5.** The design of the TEN-T network should also consider the anticipated technological innovation of the aviation industry and the development of new sources of energy for aircraft. Specifically for the intra-European market, a hydrogen-powered aircraft is expected to enable zero-CO₂ flights in the next 10-15 years ¹⁰.
- **3.6.** In cases where rail is not a good fit, efficient and sustainable alternative options such as vertiports, monorail or hydrogen/electrically powered shuttles should be examined and incentivised.
- **3.7.** The air/rail connection should be flexible, easy and comfortable. A break-in load on the way to or from the airport (i.e. 2 modes of transportation such as train and bus) is acceptable as long as the connecting times are good.
- **3.8.** Given the European Commission's proposal to extend the TEN-T rail's core network to longdistance and high-speed, ACI EUROPE requests Member States to engage with international and high-speed train operators to serve the connected airports with a high-quality service. Solutions must be found to improve the transport of passengers' luggage arriving by train at airports.

⁹ <u>https://www.aci-europe.org/media-room/384-new-study-confirms-co2-reduction-benefits-of-shifting-short-haul-flights-to-rail-are-limited.html</u>

¹⁰ https://www.airbus.com/en/innovation/zero-emission/hydrogen/zeroe

3.9. ACI EUROPE requests the European Commission to conduct a study to determine the impact of requiring airports to be connected to the rail network, with a focus on environmental aspects. The study should include the cost of building the rail infrastructure.

4. <u>Obligation for the Member States to ensure that airports provide pre-</u> conditioned air supply (PCA) to stationary aircraft

- **4.1.** ACI EUROPE has extensive experience in the area of carbon management and reduction at airports. Since 2009, Airport Carbon Accreditation is the Worldwide standard for carbon management at airports. Today 230 airports are accredited in Europe, 35 are carbon neutral and 10 are already net zero¹¹.
- **4.2.** ACI EUROPE is not aware of any impact assessment performed by the European Commission to justify the obligation for airports to deploy pre-conditioned air (PCA). The deployment and use of pre-conditioned air is not always the most effective way to reduce carbon emissions at airports and this may depend on local circumstances (e.g. temperatures). If the objective of the proposal is to reduce CO₂ emissions, other initiatives such as renewable energy supply like Photo Voltaïc plants may achieve greater CO₂ reductions at a lower cost. Furthermore, the European Commission does not foresee any obligation for airlines to use PCA once the equipment is deployed at European airports.
- **4.3.** Therefore, as part of a broad set of actions to reduce aviation emissions, ACI EUROPE supports the provision of pre-conditioned air at European airports under specific conditions outlined below. For cooling or heating the aircraft cabin, pilots may use PCA instead of using the aircraft's Auxillary Power Unit (APU), thus saving fuel and reducing emissions as well as noise when the aircraft is parked on a contact stand.
- **4.4.** Considering the high costs associated with the provision of PCA, airports shall only provide pre-conditioned air supply to the aircraft contact stand linked with the boarding bridge. In addition, this obligation should only apply to airports of the core and comprehensive network with a total annual passenger throughput of more than four million passengers by 2030 for airports of the core network and by 2040 for airports of the comprehensive network.
- **4.5.** Airlines should be obliged to use pre-conditioned air service at airports that fall under the scope of the Regulation. Failing to do so, will undermine the ability of airports to invest in PCA and, more importantly, the associated emissions reductions.
- **4.6.** The environmental and operational differences prevailing at airports, as well as size, seasonality and location, must be considered. For example, it is not justified to mandate a total coverage of all parking stands with PCA as this will lead to non or under-used equipment, particularly at small/regional airports with high seasonal traffic.
- **4.7.** The provision of pre-conditioned air at airports is a service to the aircraft on the ground, as defined in the annex to Directive 96/67/EC on access to the ground handling market. This means airports, self-handling airlines and third-party suppliers may provide the service. Member States should ensure that pre-conditioned air systems provided by airport managing bodies are 'centralised infrastructure' and make it compulsory for providers of ground handling services to use these systems (article 8 of the Ground Handling Directive).
- **4.8.** In order to guarantee the environmental benefits of PCA, the high volumes of electricity needed, especially for cooling, must come from renewable sources (either produced locally or

¹¹ https://www.airportcarbonaccreditation.org

sourced through market mechanisms). However, some airports cannot provide the necessary power to supply all the electricity needed.

- **4.9.** At airports with mild summers and winters or high seasonality, only a very small share of the flights and for short periods of time will require heating or cooling. Consequently, low usage of PCA equipment will not significantly reduce CO₂ emissions at these airports.
- **4.10.** The high investment costs associated with the deployment of PCA may jeopardise airports' ability to invest in other initiatives where more significant CO₂ reductions can be achieved. Therefore, in light of the high investment costs and uncertain environmental benefits, ACI EUROPE takes the view that the requirement to provide PCA should be contingent upon a positive impact assessment. In case the deployment of PCA is not the most cost effective way to reduce CO₂ emissions at airports, the Member State concerned rather than the European Commission should be able to grant an exemption in line with the subsidiarity principle. In addition, airports investments to comply with the requirement to provide PCA should be eligible for European and/or national funding.
- **4.11.** Given technological developments, the proposed measure shall be reviewed by December 2027 as some current (Boeing 787) and future aircrafts may be able to generate air conditioning when connected to the airport grid.

5. Obligation to provide access to sustainable fuel

- **5.1.** The TEN-T proposal makes an important cross-reference by requiring that alternative fuels infrastructure is deployed at airports in full compliance with the requirements defined in the Alternative Fuels Infrastructure Regulation (AFIR). Article 13(1)I of AFIR requires Member States to develop "a deployment plan for alternative fuels infrastructure in airports other than for electricity supply to stationary aircraft, in particular for hydrogen and electric recharging for aircrafts".
- **5.2.** ACI EUROPE welcomes the proposal for the Member States to develop infrastructure deployment plans for hydrogen-powered and electrified aircraft operations. It is critical to support airport operators to get the infrastructure ready for operations as early as possible, bearing in mind that airport infrastructure is built for decades. New projects launched today should ideally already anticipate the needs of future aircraft and be designed with tomorrow's energy demands in mind. Access to financing mechanisms, including public funding, will be instrumental in achieving this objective. TEN-T-funds could be made available for this transition.
- **5.3.** To support the transition towards more sustainable means of transport, we would welcome a true enabling regulatory framework that provides clarity, predictability, clear criteria for sustainable investment and a technology-neutral approach. We also recommend a streamlined infrastructure funding, open to airports to finance their sustainability and digitalization projects.
- **5.4.** It must be clarified that airports should be recognised as facilitators regarding access of aircraft operators to sustainable aviation fuels. Many operators do not own nor operate the fuel supply infrastructure within their perimeter. Responsibility for the provision of such infrastructure cannot rest on airport operators alone but should reflect the varying and, in some cases, shared responsibilities between different parties in this area.
- **5.5.** Furthermore, the TEN-T proposal acknowledges that "transport infrastructure may serve as energy hubs to serve different transport modes". This may be very relevant in the case of airports.

Conclusion

In conclusion, ACI EUROPE supports the revision of the Trans-European Transport Network to improve the connectivity of the transport system and make it smart, safe, seamless, sustainable, resilient, accessible and intermodal. ACI EUROPE supports the development of intermodal solutions as they enhance airports' economic growth and environmental sustainability efforts.

However, ACI EUROPE believes that:

- The environmental impact of building new rail connections in Europe is not always proportionate to the reduction achieved for both noise pollution and CO₂ emissions, especially in the case of smaller airports.
- The design of the TEN-T network should consider the anticipated technological innovation within the aviation industry, particularly the development of new propulsion systems, which are expected to enable zero-CO₂ flight in the next 10-15 years. Where connection by rail is not a good fit, efficient and sustainable alternative options such as vertiports, monorail or hydrogen/electrically powered shuttles should be considered and incentivised.
- Considering the high costs associated with providing pre-conditioned air for remote positions, airports shall provide pre-conditioned air only to the aircraft contact stands linked to the boarding bridges. For the same reason and given the high seasonality of traffic prevailing at regional airports, airports below four million passengers per year should not be required to provide pre-conditioned air to aircraft.
- To guarantee the environmental benefits of PCA, it must be ensured that the high volumes of electricity needed, especially for cooling, come from renewable sources. However, some airports don't have the required infrastructure to supply enough electricity.
- Airports' investments must be directed where significant CO₂ reductions can be achieved. In light of the high investment costs associated with the deployment of PCA, ACI EUROPE takes the view that the requirement to provide PCA should be contingent upon a positive impact assessment. Failing to do so will jeopardise airports' ability to invest in more sustainable solutions where higher CO₂ reductions can be achieved.

ACI EUROPE and its members stand ready to assist in improving the TEN-T network by providing expertise and further input to the regulatory process.

Annex

Airports of the Core TEN-T network¹²

ΙΑΤ	A CODE	Airport	Country
1.	BRU	Brussels	Belgium
2.	LGG	Liège	Belgium
3.	SOF	Sofia	Bulgaria
4.	OSR	Ostrava	Czech Republic
5.	PRG	Praha (Václav Havel)	Czech Republic
6.	СРН	København (Kastrup)	Denmark
7.	BER	Berlin (Berlin- Brandenburg Intl.)	Germany
8.	BRE	Bremen, Bremerhaven (Bremen)	Germany
9.	DUS	Düsseldorf	Germany
10.	FRA	Frankfurt am Main	Germany
11.	HAM	Hamburg	Germany
12.	HAJ	Hannover	Germany
13.	CGN	Köln (Köln-Bonn)	Germany
14.	LEJ	Leipzig, Halle	Germany
15.	MUC	München	Germany
16.	NUE	Nürnberg	Germany
17.	STR	Stuttgart	Germany
18.	TLL	Tallinn	Estonia
19.	ORK	Corcaigh/Cork	Ireland
20.	DUB	Baile Átha Cliath/Dublin	Ireland
21.	ATH	Athína - El.Venizelos	Greece
22.	HER	Heraklion	Greece
23.	SKG	Thessaloniki (Makedonia)	Greece
24.	ALC	Alicante	Spain
25.	BCN	Barcelona	Spain
26.	BIO	Bilbao	Spain

IATA CODE	Airport	Country
27. LPA	Las Palmas	Spain
28. MAD	Madrid (Barajas)	Spain
29. AGP	Málaga	Spain
30. PMI	Palma de Mallorca	Spain
31. SVQ	Sevilla	Spain
32. TFS	Tenerife (Sur: Reina Sofía)	Spain
33. VLC	Valencia	Spain
34. BOD	Bordeaux (Merignac)	France
35. LIL	Lille (Lesquin)	France
36. LYS	Lyon (St.Exupéry)	France
37. MRS	Marseille (Provence)	France
38. NCE	Nice (Côte d'Azur)	France
39. CDG	Paris (Charles de Gaulle)	France
40. ORY	Paris (Orly)	France
41. TLS	Toulouse (Blagnac)	France
42. ZAG	Zagreb	Croatia
43. BLQ	Bologna	Italy
44. CAG	Cagliari	Italy
45. GOA	Genova	Italy
46. LIN	Milano (Linate)	Italy
47. MXP	Milano (Malpensa)	Italy
48. BGY	Milano (Bergamo Orio al Serio)	Italy
49. NAP	Napoli (Capodichino)	Italy
50. PMO	Palermo	Italy
51. FCO	Roma (Fiumicino)	Italy
52. TRN	Torino	Italy
53. VCE	Venezia	Italy

¹² This list does not include airports of the Extension of TEN-T to neighbouring third countries

IATA CODE	Airport	Country
54. LCA	Larnaka	Cyprus
55. RIX	Rīga (International)	Latvia
56. VNO	Vilnius	Lithuania
57. LUX	Luxembourg	Luxembourg
58. BUD	Budapest (Liszt Ferenc)	Hungary
59. MLA	Valletta (Malta - Luqa)	Malta
60. AMS	Amsterdam (Schiphol)	Netherlands
61. RTM	Rotterdam	Netherlands
62. VIE	Wien (Schwechat)	Austria
63. KTW	Katowice (Pyrzowice)	Poland
64. KRK	Kraków	Poland
65. LCJ	Łódź	Poland
66. POZ	Poznań	Poland
67. SZZ	Solidarity Szczecin– Goleniów	Poland
68. GDN	Gdansk Lech Walesa	Poland
69. WAW	Warszawa	Poland

IATA CODE	Airport	Country
70. WRO	Wrocław	Poland
71. LIS	Lisboa	Portugal
72. OPO	Porto (Sá Carneiro)	Portugal
73. OTP	București (Henri Coandă)	Romania
74. TSR	Timișoara	Romania
75. LJU	Ljubljana	Slovenia
76. BTS	Bratislava	Slovakia
77. HEL	Helsinki (Vantaa)	Finland
78. TKU	Turku-Naantali (Turku)	Finland
79. GOT	Göteborg (Landvetter)	Sweden
80. MMX	Malmö (Sturup)	Sweden
81. ARN	Stockholm (Arlanda)	Sweden

Airports of the Comprehensive TEN-T network¹³

ΙΑΤ	Ά	Airport	Country
1		Klagonfurt	Austria
1. 2			Austria
2.		LINZ	Austria
3.		Ппяргиск	Austria
4.	GRZ	Graz	Austria
5.	SZG	Salzburg	Austria
6.	OST	Oostende	Belgium
7.	CRL	Charleroi Bruxelles sud	Belgium
8.	PDV	Plovdiv	Bulgaria
9.	VAR	Varna	Bulgaria
10.	BOJ	Burgas	Bulgaria
11.	GOZ	Gorna Oryahovitsa	Bulgaria
12.	OSI	Osijek	Croatia
13.	RJK	Rijeka	Croatia
14.	PUY	Pula	Croatia
15.	ZAD	Zadar	Croatia
16.	DBV	Dubrovnik	Croatia
17.	SPU	Split	Croatia
18.	RMI	Rijeka	Croatia
19.	PFO	Pafos	Cyprus
20.	BRQ	Brno Turany	Czech Republic
21.	RNN	Bornholm, Ronne	Denmark
22.	AAL	Aalborg	Denmark
23.	BLL	Billund	Denmark
24.	TAY	Tartu - enurme	Estonia
25.	EPU	Parnu	Estonia
26.	URE	Kuressaare	Estonia
27.	KDL	Kardla East	Estonia
28.	CFN	Donegal	Estonia
29.	ENF	Enontekioe	Finland
30.	POR	Pori	Finland
31.	SVL	Savonlinna	Finland
32.	KAO	Kuusamo	Finland
33.	KEM	Kemi - Tornio	Finland
34.	LYC	Lycksele	Finland
35.	JYV	Jyvaeskylae	Finland

IAT/ code	A e	Airport	Country
36.	кок	Kruunupyy	Finland
37.	KAJ	Kajaani	Finland
38.	IVL	Ivalo	Finland
39.	мно	Maarianhamina	Finland
40	JOE	Joensuu	Finland
41.	ктт	Kittila	Finland
42.	кио	Киоріо	Finland
43. ⁻	ТМР	Tampere - Pirkkala	Finland
44.	OUL	Oulu	Finland
45.	LPP	Lappeenranta	Finland
46.	RVN	Rovaniemi	Finland
47. '	VAA	Vaasa	Finland
48.	XCR	Paris-Vatry	France
49.	LRH	La Rochelle - Laleu	France
50.	LIG	Limoges Bellegarde	France
51.	CFR	Caen - Carpiquet	France
52.	CFE	Clermont-Ferrand / Aulnat	France
53.	BIQ	Biarritz-Bayonne- Anglet	France
54.	BES	Brest-Guipavas	France
55.	AJA	Ajaccio - Campo dell'oro	France
56.	BIA	Bastia - Poretta	France
57. 3	SXB	Strasbourg- Entzheim	France
58.	MPL	Montpellier - Mediterranee	France
59.	BVA	Beauvais-Tille	France
60.	NTE	Nantes-Atlantique	France
61.	BSL	Mulhouse-Bale	France
62.	CAY	Cayenne- Rochambeau	France
63.	DZA	Mayotte	France
64.	FDF	Fort de France-Le Lamentin	France
65.	РТР	Pointe-a-Pitre - Le Raizet	France
66.	RUN	Saint-Denis-Gillot	France

¹³ This list does not include airports of the Extension of TEN-T to neighbouring third countries

IATA	Airport	Country
code 67 FRF	Erfurt	Germany
69 NDN	Weeze	Germany
	Munctor	Germany
69. FIVIO	wunster	Germany
	iviemmingen	Germany
71. HHN	Hahn	Germany
72. DRS	Dresden	Germany
73. DTM	Dortmund	Germany
74. FKB	Karlsruhe/Baden- Baden	Germany
75. PAD	Paderborn -	Germany
	Lippstadt	Component
76. KLG	ROSTOCK - Laage	Germany
77. HUF		Germany
78. HOQ	Hot-Plauen	Germany
79. KSJ	Kassos	Greece
80. KSO	Kastoria - Aristotelis	Greece
81. KZS	Kastelorizo	Greece
82. JTY	Astipalaia	Greece
83. JSY	Syros	Greece
84. JIK	Ikaria - Ayios Kirikos	Greece
85. JKL	Kalymnos	Greece
86. LRS	Leros	Greece
87. KIT	Kithira	Greece
88. JSH	Sitia	Greece
89. IOA	Ioannina	Greece
90. LXS	Limnos - Ifaistos	Greece
91. KVA	Kavala - Megas Alexandros	Greece
92. AXD	Alexandroupolis - Dimokritos	Greece
93. JNX	Naxos	Greece
94. KLX	Kalamata	Greece
95. AOK	Karpathos	Greece
96. JSI	Skiathos -	Greece
	Papadiamantis	
97. VOL	Nea Anchilaos	Greece
98. GPA	Araxos (Patras)	Greece
99. PAS	Paros	Greece
100.PVK	Preveza	Greece
101.JKH	Chios	Greece
102.SMI	Samos - Aristarchos	Greece
103.MJT	Mitilini - Eliti	Greece

IATA code	Airport	Country
104.EFL	Kefalonia	Greece
105.ZTH	Zakinthos	Greece
106.JMK	Mykonos	Greece
107.KGS	Kos - Ippokratis	Greece
108.CHQ	Chania	Greece
109.JTR	Santorini	Greece
110.CFU	Kerkyra - I.	Greece
	Kapodistrias	
111.RHO	Rhodos - Diagoras	Greece
112.SKU	Skiros	Greece
113.MLO	Milos	Greece
114.DEB	Debrecen	Hungary
115.SOB	Sarmellek	Hungary
116.NOC	Connaught	Ireland
117.SNN	Shannon	Ireland
118.IOR	Inishmore	Ireland
119.KIR	Kerry Farranfore Airport	Ireland
120.WAT	Waterford	Ireland
121.BZO	Bolzano	Italy
122.CIY	Catania - Comiso	Italy
123.REG	Reggio Calabria	Italy
124.RMI	Federico Fellini	Italy
125.PEG	Perugia airport	Italy
126.PNL	Pantelleria	Italy
127.TPS	Trapani/Birgi	Italy
128.PSR	Pescara	Italy
129.AOI	Ancona - Falconara	Italy
130.TRS	Trieste - Ronchi dei	Italy
131.AHO	Alghero-Fertilia	Italv
132.LMP	Lampedusa Airport	Italy
133.SUF	Lemezia Terme	Italy
	International	
12/ EDA	Airport Marina di Campo	Italy
134.EDA	Prindici Danola	Italy
199.002	Casale	italy
136.TSF	Treviso (San Angelo)	Italy
137.OLB	Olbia - Costa	Italy
	Smeralda	
138.VRN	Verona - Villafranca	Italy
139.FLR	Firenze-Peretola	Italy

IATA	Airport	Country
	Roma - Ciamnino	Italy
140.CIA	Pisa - Galileo Galilei	Italy
1/12 RDI	Bari-Dalese	Italy
142.DN	Eoggia	Italy
145.FUG		Italy
144.3UF		Latvia
145.VINT	Ventspils	Latvia
146.DGP	Daugavpils	Latvia
147.LPX	Гераја	
148.PLQ	Palanga	Lithuania
149.KUN	Kaunas	Lithuania
150.GRQ	Groningen Airport	Netherlands
151.EIN	Eindhoven	Netherlands
152.MST	Maastricht-Aachen	Netherlands
153.SZY	Olsztyn-Mazury	Poland
154.1117		Poland
155.BZG	Bydgoszcz	Poland
156.R7F	Byegoszez Bzeszow Jasionka	Poland
157.CVII	Corvo	Portugal
158 \$17	Sao lorge	Portugal
150.552 159 FI W	Flores	Portugal
160 PXO	Porto Santo	Portugal
161 SMA	Santa Maria	Portugal
162 HOR	Horta	Portugal
162 DIV	Pico	Portugal
164 TER		Portugal
165 PDI	Ponta Delgada	Portugal
105.PDL	(João Paulo II)	Foitugai
166.FNC	Madeira/ Cristiano Ronaldo	Portugal
167.FAO	Faro	Portugal
168.BYJ	Веја	Portugal
169.BGC	Braganca	Portugal
170.VRL	Vila Real	Portugal
171.TCE	Tulcea	Romania
172.SCV	Suceava	Romania
173.IAS	lasi	Romania
174.BAY	Baia Mare	Romania
175.OMR	Oradea	Romania
176.CND	Constanta	Romania
177.CRA	Craiova	Romania
178.BCM	Bacau	Romania

IATA code	Airport	Country
179.SBZ	Sibiu	Romania
180.CLJ	Cluj-Napoca	Romania
181.TAT	Poprad Tatry	Slovakia
182.KSC	Kosice	Slovakia
183.MBX	Maribor	Slovenia
184.POW	Portoroz	Slovenia
185.SLM	Salamanca	Spain
186.MJV	Murcia/San Javier	Spain
187.LEN	Leon	Spain
188.BJZ	Badajoz	Spain
189.VLL	Valladolid	Spain
190.PNA	Pamplona	Spain
191.EAS	San Sebastian	Spain
192.VDE	Hierro	Spain
193.ZAZ	Zaragoza	Spain
194.XRY	Jerez	Spain
195.SDR	Santander	Spain
196.LEI	Almeria	Spain
197.VIT	Vitoria	Spain
198.VGO	Vigo	Spain
199.MLN	Melilla	Spain
200.GRX	Granada	Spain
201.LCG	La Coruna	Spain
202.GRO	Girona	Spain
203.OVD	Asturias	Spain
204.REU	Reus Airport	Spain
205.SCQ	Santiago de	Spain
206 600	Compostela	Spain
200.3FC	Monorca	Spain
207.IVIAN	Fuertoventura	Spain
200.FUE		Spain
209.ACE	Ibiza	Spain
210.102 211 TEN	Toporifo-N	Spain
211. IFN	Burgos	Spain
213 GM7	La Gomera	Snain
213.01VIZ	Mora	Sweden
215 HMV	Hemavan	Sweden
215.1101V 216 PIA	Paiala	Sweden
217 FVG	Svea	Sweden
217.EVG	Vilhelmina	Sweden
210. V IIIVI	viilleittiild	JWEUEII

219.HFS	Hagfors	Sweden
220.GEV	Gaellivare	Sweden
221.ORB	Oerebro	Sweden
222.AJR	Arvidsjaur	Sweden
223.JKG	Joenkoeping	Sweden
224.KRN	Kiruna	Sweden
225.SFT	Skellefteaa	Sweden
226.RNB	Ronneby	Sweden
227.KLR	Kalmar	Sweden
228.SDL	Sundsvall	Sweden

229.AGH	Aengelholm	Sweden
230.OSD	Oestersund - Froesoen	Sweden
231.VBY	Visby	Sweden
232.LLA	Luleaa - Kallax	Sweden
233.UME	Umeaa	Sweden
234.NYO	Stockholm-Skavsta	Sweden
235.BMA	Stockholm - Bromma	Sweden